Sparse polynomial space approach to dissipative quantum systems: application to the sub-ohmic spin-boson model.

نویسندگان

  • A Alvermann
  • H Fehske
چکیده

We propose a general numerical approach to open quantum systems with a coupling to bath degrees of freedom. The technique combines the methodology of polynomial expansions of spectral functions with the sparse grid concept from interpolation theory. Thereby we construct a Hilbert space of moderate dimension to represent the bath degrees of freedom, which allows us to perform highly accurate and efficient calculations of static, spectral, and dynamic quantities using standard exact diagonalization algorithms. The strength of the approach is demonstrated for the phase transition, critical behavior, and dissipative spin dynamics in the spin-boson model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum phase transition in the sub-Ohmic spin-boson model: quantum Monte Carlo study with a continuous imaginary time cluster algorithm.

A continuous time cluster algorithm for two-level systems coupled to a dissipative bosonic bath is presented and applied to the sub-Ohmic spin-boson model. When the power s of the spectral function Jomega proportional, variant omegas is smaller than 1/2, the critical exponents are found to be classical, mean-field like. Potential sources for the discrepancy with recent renormalization group pre...

متن کامل

Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model.

We describe the generalization of Wilson's numerical renormalization group method to quantum impurity models with a bosonic bath, providing a general nonperturbative approach to bosonic impurity models which can access exponentially small energies and temperatures. As an application, we consider the spin-boson model, describing a two-level system coupled to a bosonic bath with power-law spectra...

متن کامل

Zero-temperature localization in a sub-Ohmic spin-boson model investigated by an extended hierarchy equation of motion

With a decomposition scheme for the bath correlation function, the hierarchy equation of motion (HEOM) is extended to the zero-temperature sub-Ohmic spin-boson model, providing a numerically accurate prediction of quantum dynamics. As a dynamic approach, the extended HEOM determines the delocalized-localized (DL) phase transition from the extracted rate kernel and the coherent-incoherent dynami...

متن کامل

Matrix product state representation without explicit local Hilbert space truncation with applications to the sub-ohmic spin-boson model

We present an alternative to the conventional matrix product state representation, which allows us to avoid the explicit local Hilbert space truncation many numerical methods employ. Utilizing chain mappings corresponding to linear and logarithmic discretizations of the spin-boson model onto a semi-infinite chain, we apply the newmethod to the sub-ohmic spin-boson model. We are able to reproduc...

متن کامل

Critical and strong-coupling phases in one- and two-bath spin-boson models.

For phase transitions in dissipative quantum impurity models, the existence of a quantum-to-classical correspondence has been discussed extensively. We introduce a variational matrix product state approach involving an optimized boson basis, rendering possible high-accuracy numerical studies across the entire phase diagram. For the sub-Ohmic spin-boson model with a power-law bath spectrum ∝ω(s)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 102 15  شماره 

صفحات  -

تاریخ انتشار 2009